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The three-dimensional governing macroscopic equations of the flow field which is
developed when an elasto-plastic highly deformable open-cell porous medium whose
pores are uniformly filled with liquid and gas is struck head-on by a planar shock
wave, are developed using a multiphase approach. The one-dimensional version of
these equations is solved numerically using an arbitrary Lagrangian Eulerian (ALE)
based numerical code. The numerical predictions are compared qualitatively to experi-
mental results from various sources and good agreements are obtained. This study
complements our earlier studies in which we solved, using an ALE-based numerical
code, the one-dimensional governing equations of the flow field which is developed
when an elasto-plastic flexible open-cell porous medium, capable of undergoing
extremely large deformations, whose pores are saturated with gas only, is struck head-
on by a planar shock wave.

1. Introduction
Levy, Ben-Dor & Sorek (1996) presented a comprehensive numerical investigation

of the propagation of planar shock waves through gas-saturated elastic rigid porous
materials, able to undergo only very small deformations. (We use the term ‘rigid’
in the loose relative sense, which is common when applied to porous materials, in
general, and in particular, i.e. deformations do not exceed a few per cent.) Their
study consisted of (i) development of the governing equations, (ii) developed of a
total variation diminishing (TVD) based numerical code for solving the equations,
(iii) simulation of the interaction process, and (iv) comparison of their numerical
predictions with experimental results that were conducted by them. Levi-Hevroni
et al. (2002) complemented this study by considering gas saturated elasto-plastic
flexible porous materials, capable of undergoing extremely large deformations. In
their study they (i) developed, using a multiphase approach, the three-dimensional
governing equations of the flow field, (ii) developed an arbitrary Lagrangian Eulerian
(ALE) based numerical code for solving the equations, (iii) solved numerically the one-
dimensional version of these equations, and (iv) compared qualitatively the numerical
predictions to experimental results from various sources. In the present study, we
extend the investigation of Levi-Hevroni et al. (2002) from a two-phase medium, i.e.
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a gas-saturated solid flexible foam, to a three-phase medium, i.e. a solid flexible foam
saturated with two different fluids, a gas (air) and a liquid (water).

As stated in Levy et al. (1996) and Levi-Hevroni et al. (2002) if a local study of
the flow field that is developed inside a porous medium after it is struck head-on by
a shock wave is required, an analysis based on a continuum multiphase approach,
rather than a single-phase approach (e.g. the mixing approach), should be carried out.

In the multiphase approach, the porous medium is considered to be composed
of a few phases, namely the solid matrix of which the foam skeleton is made and
the fluids that occupy its pores, which interact with each other. Baer & Nunziato
(1986) presented a detailed description of this approach. Baer (1988) presented a
one-dimensional two-phase analysis with air as the fluid phase.

Biot’s (1956) analysis referred to microscopic representations of the phase balance
equations within the framework of the theory of mixtures and was probably the first
one to employ the notion of wave propagation in porous media. A large number
of papers have appeared in the literature following Biot’s pioneering (e.g. Degrande
& de Roeck 1992; Nigmatulin & Gubaidulin 1992; Smeulders, de La Rosette &
van Donger 1992). Most refer to linear acoustic waves that take place when the
momentum dissipation terms dominate. Corapcioglu (1991) presented an extensive
literature survey of similar approaches.

Macroscopic mass, momentum and energy balance equations for the fluid phases
and the solid matrix were formulated on the basis of representative elementary volume
(REV) concepts by Bear & Bachmat (1990). These macroscopic balance equations
were composed of averaged flux terms together with integrals of the microscopic
exchange flux terms at the phase interfaces. Some unique macroscopic parameters,
which emerged from the averaging process, were the tortuosity factor that represented
a tensor associated with the matrix directional cosines, the hydraulic radius of the
pore spaces, and the porosity that represented the volume fraction of the pores, filled
by the fluids. Consequently, unlike preceding models (e.g. Baer 1988), which accounted
only for the properties of the phases, the macroscopic model developed by Bear &
Bachmat (1990) also accounted for the geometrical properties.

Based on these studies, Bear & Sorek (1990) developed the dominant macroscopic
forms of the mass and momentum balance equations following an abrupt pressure
impact in gas-saturated porous materials under isothermal conditions. They showed
that during a certain time period, owing to the domination of the momentum inertial
terms the fluid momentum balance equation conforms to nonlinear waveforms for
which the wave speed was also a function of the internal structure of the porous
material. This initiated the establishment of the macroscopic theoretical basis for
wave motion in multiphase deformable porous media.

Bear et al. (l992) and Sorek et al. (l992) elaborated on these for the case of
thermoelastic porous media, describing the theoretical basis for obtaining dis-
placement and shock waves, respectively. Levy et al. (l995) introduced additional
Forchheimer terms (an additional macroscopic inertial term emerging from the
exchange of microscopic inertia between the fluid and the solid phases at their
solid–fluid interface) and obtained a variety of nonlinear wave equation forms.
These together with the development of the evolving balance equations that follow
an abrupt simultaneous change of the fluid temperature and pressure, were the
major novel theoretical aspects when compared with Nikolaevskij (1990). Levy et al.
(1995) conducted a dimensional analysis of these macroscopic balance equations
and obtained the macroscopic momentum and energy balance equations, for a
gas-saturated elastic rigid (limited to very small deformations) porous medium.
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(The term gas-saturated in this study means that the same gas occupies all the
pores.)

Unlike the model of Levy et al. (1996), the model of Levi-Hevroni et al. (2002)
included the capability of the solid matrix to undergo extremely large deformations. As
a result the governing equations included different constitutive equations. In addition,
Hooke’s law was expressed in terms of the stress rate as a function of the strain rate,
i.e. σ̇ = f (ε̇), rather than the stress as a function of the strain σ = f (ε) as was the case
in Levy et al. (1996). This change resulted in an additional differential equation in
the set of the governing equations, which, in turn, required an additional integration.
The ability of the porous medium to undergo extremely large deformations prevented
Levi-Hevroni et al. (2002) from adopting the TVD-based computer code, which was
developed by Levy et al. (1996). Instead, a new code, which included an interface
tracking technique, originally proposed by Chan (1975), aimed at tracking the porous
medium interface, was developed. The upwind TVD shock-capturing scheme (which
is based on an Eulerian method) was extended to solve the governing equations of
the gaseous phase, and a Lagrangian method was extended to solve the governing
equations of the solid phase. As a result, a mixed Lagrangian and Eulerian method
(ALE) was implemented in order to predict the characteristics of the entire flow field.

A comprehensive theoretical and experimental study of the interaction of a planar
shock wave propagating inside water and striking a semi-infinite fully and partially
saturated column of porous medium, which was based on the mixed approach, was
conducted by van der Grinten et al. (1988). (By fully saturated porous medium we
generally mean that all the pores are filled with liquid. By partially saturated porous
media we mean that some of the pores are filled with liquid and some of them are
filled with gas. In van der Grinten et al., the liquid was water and the gas was air.)
In their analytical model they assume that the nonlinear terms (i.e. the terms that
are related to the square of the velocity) in the conservation equations, the changes
in the density of the solid matrix, and the temperature changes are all negligibly
small. As a consequence of the constant temperature assumption, their analytical
model does not account for the conservation of energy equation. In addition, they
assume that all the variables are complex amplitudes that exponentially depend on
time, t , and frequency, ω e.g. p = p̃ exp(iωt). They also assume that the momentum
transfer between the phases depends on the frequency, and that the dependence can be
expressed in terms of a Darcy type momentum flux (i.e. a linear friction dependence
between the phases) multiplied by a respective function. In their model they also
accounted for the added mass. The equation of state of the water was expressed as
a function of the water compressibility; Hooke’s law was used to express the stresses
in the solid; and the strain was expressed as an inverse function of the relative
volume of the water. The numerical solution of van der Grinten et al. (1988), for the
fully saturated case, revealed the existence of two wavefronts that were moving at
different velocities. The first wave was developed inside the porous medium and it
compressed the entire medium (i.e. the liquids and the solid). The second wave, which
was slower, was developed inside the liquid and it further compressed the liquid. Van
der Grinten et al. (1988) also solved numerically the partially saturated case. They
presented various results as a function of the degree of saturation (percentage of air).
They showed, for example, that for the case of 0.1 % air, the pressure amplitude in
the pores was lower than in the fully saturated case. However, the amplitude of the
effective stress was larger. The opposite was revealed behind the second wave, namely,
the pressure amplitude is larger and the effective stress amplitude is smaller. They
also reported that the amplitude of the first wave was barely noticed when the degree
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of saturation was increased to 1 %. The numerical calculations of van der Grinten
et al. (1988) indicated that there is a strong dependence between the properties
of the porous medium and the liquid filling its pores. The numerically predicted
results were validated by experiments, which were conducted in a vertical shock
tube. The investigated porous medium (column) was made of epoxy-glued sand.
A planar incident shock wave, propagating in air, hit an air/water interface. The
transmitted wave interacted with the porous medium. The porous medium contained
pressure transducers, which measured the pressure in the pores along the column. The
measurements revealed a two-step pressure increase in the pores. The first stage was
a sharp jump, which was close to being constant, and the second stage was a gradual
increase, until a constant value was reached. Similarly, the experiments indicated that
the strain jumps sharply to a constant value that is maintained until its magnitude
gradually decreased to a constant value.

2. Three-dimensional governing equations
Levi-Hevroni (2000) presented a detailed derivation of the three-dimensional

macroscopic governing equations governing the flow field, which is developed when
waves propagate through a multiphase saturated porous medium. In the following,
only the assumptions used in the derivation of the governing equations and the final
form of the equations are given.

2.1. The assumptions

1. The fluids filling the pores are gas and liquid (they are denoted by g and �,
respectively).

2. The fluids are ideal (i.e. inviscid, µf = 0, and thermally non-conductive, λf =0.
Here, µf is the dynamic viscosity and λf is the thermal conductivity of the fluid,
which is denoted by f (≡ g, �)).

3. The pressure due to the surface tension of the liquid phase is negligible.
4. The gas obeys the equation of state of a perfect gas.
5. The dispersive and the diffusive mass fluxes of the phases are much smaller

than the corresponding advective mass fluxes, and can, therefore, be neglected.
6. The dispersive momentum fluxes of the phases are much smaller than their

advective momentum fluxes, and can, therefore, be neglected.
7. The conductive and the dispersive heat fluxes of the fluids phases are negligibly

small compared to their advective heat fluxes.
8. The microscopic solid/fluid interfaces are material surfaces with respect to the

masses of both the fluids and the solid phases.
9. The solid matrix is flexible, and is assumed to behave as an elasto-plastic

material.
10. The stress–strain relationships of the solid matrix, at the microscopic level, and

of the solid matrix, at the macroscopic level, have the same form.
11. The material of which the skeleton of the porous material is made is

incompressible.
12. The specific heat capacity at constant volume of the fluids, Cf , are constant.
13. The energy processes of the gaseous phase are reversible. Energy associated

with viscous dissipation is negligibly small.
14. There are no external energy sources. Rates of heat transferred between the

fluids and the solid phases are negligibly small.
15. The energy associated with viscous dissipation in each phase is negligible.
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16. The solid phase is isothermal.
17. The initial distributions of both fluids, i.e. the liquid and the gas, are uniform.

2.2. The balance equations

The macroscopic mass balance equation for the liquid, the gas and the solid phases
are:

∂

∂t
(θ�ρ�) = −∇ · (θ�ρ�V �), (1)

∂

∂t
(θgρg) = −∇ · (θgρgV g), (2)

∂

∂t
[(1 − φ)ρs] = −∇ · [(1 − φ)ρs V s], (3)

where ρα is the density of the α-phase, V α is its velocity vector, φ is the porosity and
θα is the volume fraction of the α fluid phase which occupies the pores of the porous
media. The storativity (Sα) of the α fluid, which defines the percentage of the α fluid
in the pores of the porous matrix, may be used (θα = Sαφ) to define the porosity of
the media.

φ = θ� + θg = S�φ + (1 − S�)φ. (4)

The macroscopic momentum balance equations for the liquid and the gas phases are:

∂

∂t
(θ�ρ�V �) = −∇ · [θ�ρ�V �V �] − θ�T

∗[∇p� + ρ�g∇Z] − F̃�sθ�ρ�V �s V �s − F̃g�θgρgV g�V g�,

(5)
∂

∂t
(θgρgV g) = −∇ · [θgρgV gV g] − θgT

∗[∇pg + ρgg∇Z]

− θgρg(F̃gsV gsV gs − F̃g�V g�V g�), (6)

where pα , which is the partial pressure of the α-phase, is prescribed by the equation
of state [pα = pα(ρα, eα), α = �, g], g is the acceleration due to gravity in the Z-
direction, F̃αβ and T∗ are the Forchheimer tensors for an isotropic solid matrix and
the tortuosity tensor associated with the directional cosines at the α−β interface, and
V αβ (≡ V α − V β, α = �, s, g, β = �, s, g, α �= β) is the relative velocity between the α

and β phases, respectively.
The macroscopic momentum balance equation for the solid phase is:

∂

∂t
[(1 − φ)ρs V s] = −∇ · [(1 − φ)ρs V s V s] + ∇σ ′

s − φpc∇S�

− (1 − φT∗)∇pv + F̃�sθ�ρ�V �s V �s + F̃gsθgρgV gsV gs, (7)

where the capillary and the void pressures are defined by

pc = pg − p�,

pv = S�p� + (1 − S�)pg,

}
(8)

and σ ′
s is the effective stress tensor of an elasto-plastic solid matrix as given by

Terzaghi (1925) and expressed by

σ ′
s = (1 − φ)(σ s + pvI). (9)
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The macroscopic energy balance equation for the liquid and the gas phases are
written, respectively, in the forms:

∂

∂t

[
θ�ρ�

(
e� +

V 2
�

2

)]
= −∇ ·

[
θ�ρ�V �

(
e� +

V 2
�

2

)]
− T∗θ�V f ∇p� − F̃�sθ�ρ�V �s V �s V s − F̃g�θgρgV g�V g�V �, (10)

∂

∂t

[
θgρg

(
eg +

V 2
g

2

)]
= −∇ ·

[
θgρgV g

(
eg +

V 2
g

2

)]
− T∗θgV g∇pg − θgρg(F̃gsV gsV gsV s − F̃g�V g�V g�V �), (11)

where eg is the internal energy of the fluid.
The equation of state for the gas phase, which is assumed to be a perfect gas, is:

pg = ρg�Tg. (12)

Here, � is the specific gas constant and Tg is the gas absolute temperature.
The equation of state for the liquid phase having a constant compressibility factor,

βp , is:

p� = βpρ�. (13)

It should be noted here that unlike Levy et al. (1996), who treated a thermo-elastic
solid matrix, the present model assumes an elasto-plastic model. This, in turn, enables
the solid matrix to undergo extremely large deformations. As a result, Hooke’s law
was expressed in terms of the effective stress rate (σ̇ ′

si) tensor components depending
on the strain rate (ε̇i) tensor components:

σ̇ ′
si = λ′′

s

V̇

V
+ 2µ′

s ε̇i , (14)

where µ′
s and λ′′

s are the Lamé constants of a solid and V is the relative volume of
the solid matrix. The dot means a Lagrangian time derivative along a particle path. It
should be noted here that natural strain is used when Hooke’s law is expressed in the
form of equation (14). Natural strain means that the strain of an element referred to
the actual configuration instead of the original configuration. The macroscopic strain
rate tensor for the solid matrix is defined by,

ε̇ = 1
2
[∇V s + (∇V s)

T ]. (15)

The volumetric strain can be obtained from the macroscopic mass balance equation.
The solid macroscopic mass balance equation along a particle path is,

D

Dt
[(1 − φ)ρs] = −∇ · V s . (16)

We can define the relative volume, V =ρ̄so/ρ̄s , where ρ̄so = (1 − φo)ρs and ρ̄s =
(1 − φ)ρs , and rewrite the mass balance equation in the following form,

1

V

DV

Dt
= ∇ · V s . (17)

The stresses can be decomposed into a hydrostatic component, P (the mean of the
three principal stresses), and a deviator component, τ :

σ ′
si = −Psi + τi. (18)
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With the aid of equations (7) and (11), Hooke’s law can be expressed as,

τ̇si = 2µ′
s

(
ε̇i − 1

3

V̇

V

)
, Ṗ = −K

V̇

V
, (19)

where K is the bulk modulus.
The yield condition (von Mises) was written as,

τ 2
1 + τ 2

2 + τ 2
3 � 2

3
(Y o)2, (20)

where Y o is the yield strength in simple tension. Following the calculation of the
stress deviators, using Hooke’s law (equation (12)), the yield condition, given by
equation (20), was checked. If the yield condition was not fulfilled, the solid was
allowed to deform plastically under a constant stress equal to the maximum value
that satisfied equation (20). This was accomplished by multiplying each of the stress

deviators by
√

2/3Y o/
√

τ 2
1 + τ 2

2 + τ 2
3 . The normal stress was independent of the plastic

deformation, and an equation of state having the form P = P (V ) was used to calculate
the normal stress.

2.3. One-dimensional governing equations

In the present study, the one-dimensional version of the above set of three-dimensional
governing equations for an isothermal gas and liquid phases was solved. The mass,
momentum and energy balance equations, respectively, of the gas phase occupying
the pores of the porous medium are:

∂

∂t
(θgρg) = − ∂

∂x
(θgρgug), (21)

∂

∂t
(θgρgug) = − ∂

∂x
[θgρgugug] − θgT

∗ ∂pg

∂x
− θgρg(F̃ gsugsugs − F̃ g�ug�ug�), (22)

∂

∂t

[
θgρg

(
eg +

u2
g

2

)]
= − ∂

∂x

[
θgρgug

(
eg +

u2
g

2

)]

− T∗θgug

∂pg

∂x
− θgρg(F̃ gsugsugsus − F̃ g�ug�ug�u�), (23)

and

pg = (γ − 1)ρgeg. (24)

Here, γ is the heat capacities ratio.
The mass and momentum balance equations of the liquid phase occupying the

pores of the porous medium, by virtue of equation (13), are respectively:

∂

∂t
(θ�ρ�) = − ∂

∂x
(θ�ρ�u�), (25)

∂

∂t
(θ�ρ�u�) = − ∂

∂x
[θ�ρ�u�u�] − θ�T

∗ ∂p�

∂x
− θ�ρ�F̃ �su�su�s + θgρgF̃ g�ug�ug�, (26)

p� = βpρ�, (27)

where θ� + θg = φ.
The mass and momentum balance equations of the solid phase, by virtue of equa-

tion (14), are respectively:

∂

∂t
[(1 − φ)ρs] = − ∂

∂x
[(1 − φ)ρsus], (28)
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∂

∂t
[(1 − φ)ρsVs] +

∂

∂x
(τ ′

s − Ps) +
∂

∂x

[
(1 − φ)ρsu

2
s

]
= −(1 − φT ∗)

∂

∂x
pv − φpc

∂S�

∂x
+ F̃ gsθgρgugsugs + F̃ �sθ�ρ�u�su�s. (29)

Finally, the conservation of mass and momentum equations of the solid phase
along a particle path are:

Dρ̄s

Dt
= −ρ̄s

∂us

∂Xs

(30)

and

ρ̄s

Dus

Dt
+

∂σ ′
s

∂Xs

= (1 − φT ∗)
∂pg

∂Xs

+ F̃ gsφρgugsugs + F̃ �sθ�ρ�u�su�s. (31)

The conservation of mass and momentum equations of the liquid phase along a
particle path are:

Dρ̄�

Dt
= −ρ̄�

∂u�

∂X�

, (32)

ρ̄�

Du�

Dt
= −θ�T

∗ ∂p�

∂X
− θ�ρ�F̃ �su�su�s + θgρgF̃ g�ug�ug�. (33)

3. The numerical method
An upwind TVD shock-capturing scheme, originally developed by Harten (1983),

was extended by Levy et al. (1996) to solve the problem of the gas flow, which
described the propagation and interaction of waves in saturated porous media. Since,
in this scheme, it is difficult to keep track of the porous media interface, as it moves
through the Eulerian mesh, a mixed Lagrangian and Eulerian method was developed
in order to keep track of the front and still be able to calculate exchange terms
between the fluids and the solid phases. The developed numerical scheme is based on
an arbitrary Lagrangian Eulerian (ALE) method (for more details see Hint, Amsden
& Cook 1974), where the gaseous phase flow fields were predicted with a TVD
based numerical scheme and flow fields of both the liquid and the solid phases were
predicted using a Lagrangian scheme.

3.1. The TVD-scheme for solving the conservation equations of the gaseous phase

The one-dimensional governing equations of the gaseous phase in a conservative
vector form were written as follows

∂U
∂t

+
∂ F
∂x

= Q. (34)

In this equation the variables vector, U , the flux vector F, and source vector Q, are
as follows:

U =

[
ρ̄g

mg

Eg

]
; F =

⎡
⎣ mg

ugρ̄g + T ∗P̄ g

ug(Eg + T ∗P̄ g)

⎤
⎦Q =

⎡
⎢⎢⎢⎢⎣

0

T ∗P
∂θg

∂x
− ρ̄g(F̃ gs|vgs|vgs + F̃ g�|vg�|vg�)

ugT
∗P

∂θg

∂x
− ρ̄g(F̃ gs|vgs|vgsus + F̃ g�|vg�|vg�u�)

⎤
⎥⎥⎥⎥⎦.

(35)

In these vectors, the macroscopic density and the pressure are ρ̄g = θgρg and
P̄ g = θgPg , respectively. The momentum and the energy are mg = u

g
ρ̄g and
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Eg = ρ̄g(
1
2
u2

g + eg), respectively, and the relative velocity between the gaseous and the
liquid and solid phases, vgα , is defined as vgα = vg − vα .

The scheme for solving these conservation equations is

Un+1
j = Un

j − λ
(

F̄j+1/2 − F̄j−1/2

)
+ t Qj , (36)

where the parameter λ is defined by

λ ≡ t/x (37)

and the numerical flux, F̄j+1/2 , is evaluated from

F̄j+1/2 =
1

2

[
F
(
Un

j

)
+ F

(
Un

j+1

)
− 1

λ

6∑
k=1

βk
j+1/2 Rk

j+1/2

]
, (38)

where

βk
j+1/2 = Ψ k

(
νk

j+1/2 + γ k
j+1/2

)
αk

j+1/2 −
(
gk

j + gk
j+1

)
.

The various parameters in the above expression are

νk
j+1/2 = λak

(
U j+1/2

)
, (39)

γ k
j+1/2 =

{(
gk

i+1 − gk
i

)/
αk

j+1/2, αk
j+1/2 �= 0,

0, αk
j+1/2 = 0,

(40)

gk
i = sgn

(
g̃k

j+1/2

)
max

[
0, min

(∣∣g̃k
j+1/2

∣∣, g̃k
j−1/2sgn

(
g̃k

j+1/2

))]
,

g̃k
j+1/2 = 1

2

[
Ψ k

(
νk

j+1/2

)
−
(
νk

j+1/2

)2]
αk

j+1/2,

}
(41)

Ψ (x) =

{
x2/4ξ + ξ, |x| < 2ξ,

|x|, |x| � 2ξ,

ξ =

{
0.1, (∂ak/∂U)Rk �= 0,

0, (∂ak/∂U)Rk = 0.

⎫⎪⎪⎬
⎪⎪⎭ (42)

The eigenvalues, ak , of the Jacobian matrix A(U) = ∂ F/∂U were found symbolically
to be,

a1 = ûg − ĉg; a2 = ûg; a1 = ûg + ĉg; (43)

where ûg and ĉg are defined, subsequently, in equation (45).
The corresponding right eigenvectors, Rk , were found to be

R1 =

⎡
⎣ 1

ûg − ĉg

Ĥ g − ûgĉg

⎤
⎦, R2 =

⎡
⎣ 1

ûg

1
2
û2

g

⎤
⎦, R3 =

⎡
⎣ 1

ûg + ĉg

Ĥ g + ûgĉg

⎤
⎦. (44)

The mean value Jacobian A(UL, UR) can be expressed in the form (Roe 1981),

ûj+1/2 =

〈
ugρ̄

1/2
g

〉
ρ̄

1/2
g

, Ĥ j+1/2 =

〈
Hgρ̄

1/2
g

〉
ρ̄

1/2
g

,

ĉj+1/2 =
{
(γ − 1)

(
Ĥ j+1/2 + 1

2
û2

g

)}1/2
.

⎫⎪⎬
⎪⎭ (45)

where 〈b〉 denotes the arithmetic average of the property b, e.g. 〈b〉 = 1
2
(bj + bj+1).

The parameters αk
j+1/2 were obtained by solving the following linear equations

U j+1 − U j =

6∑
k=1

αk
j+1/2 Rk

j+1/2.
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The solution resulted in:

α1 = 1
2
(C1 − C2); α2 = 1

2
[ρ̄] − C1; α3 = 1

2
(C1 + C2),

C1 =
1

ĉ2
g

(γ − 1)
{
[E] + û2

g[ρ̄] − ug[m]
}
,

C2 =
1

ĉg

{[m] − ûg[ρ̄]},

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(46)

where [b] ≡ bi+1 − bi , and b̂ is the average of the property b inside the interval
[xi+1 − xi].

3.2. The Lagrangian scheme for solving the balance equations of the solid phase

The scheme for solving the balance equations of the solid phase was based on a
Lagrangian approach (see Hint et al. 1974; Chan 1975), together with a re-mapping
of the solution to the grid of the gaseous phase, in order to calculate the exchange of
momentum and energy between the gaseous and the solid phases through the source
terms.

The conservation of momentum of the solid phase, in mass coordinate, is:

ms =

∫ X(m,t)

X(0,t)

ρ̄s dV =

∫ X(m,t)

X(0,t)

ρ̄sA dXs. (47)

The conservation of mass for the solid phase is:

D

Dt

(
1

ρ̄s

∂ms

∂Xs

)
= 0. (48)

Using the mass coordinate, defined in equation (47), the momentum equation of
the solid phase is:

Dus

Dt
=

∂(τs − Ps)

∂ms

− (1 − φT ∗)
∂pv

∂ms

− pc

∂S�

∂ms

+
1

ρ̄s

F̃ gsθgρgugsugs +
1

ρ̄s

F̃ �sθ�ρ�u�su�s.

(49)

The deviator component, τ was calculated from:

Dτx

Dt
= 2G

[
ε̇x − 1

3
ε̇x

]
= −4

3

∂us

∂X
= − 4

3
Gρ̄s

∂us

∂ms

. (50)

The constitutive equation for the flexible porous material (e.g. foam, which in this
study means a highly porous medium, porosity > 0.7) was taken from Zaretsky &
Ben-Dor (1996).

Ps = 1
3
Ēsηmax

[
− ln

(
1 − η

ηmax

)
− B

(
η

ηmax

)n]
, (51)

where,

η = 1 − ρ̄s0

ρ̄s

, ηmax = 1 − ρ̄s0

ρs

= 1 − (1 − φ) = φ. (52)

The macroscopic Young modulus of the foam as given by Gibson & Ashby (1988)
is:

Ēs = (1 − φ)2Es, (53)

where Es is the Young’s modulus of the solid material of which the skeleton of the
foam is made.
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Based on equation (31), the velocity of the solid phase was calculated by,

u
n+1/2
sj = u

n−1/2
sj −

(
τn
j+1/2 − τn

j−1/2 + P n
sj+1/2 − P n

sj−1/2 + qn
j+1/2 − qn

j−1/2

)tv

m

−(1 − φT ∗)nj
(
pn

vj+1/2 − pn
vj−1/2

)tv

m
− pn

vj

(
Sn

�j+1/2 − Sn
�j−1/2

)tv

m

+
tv

ρ̄n
sj+1/2

F̃ gsθ
n
gj+1/2ρ

n
gj+1/2

∣∣un
gsj

∣∣un
sgj +

tv

ρ̄n
sj+1/2

F̃ �sθ
n
�j+1/2ρ

n
�j+1/2

∣∣un
�sj

∣∣un
s�j , (54)

where the deviator component is:

τn+1
xj+1/2 = τn

xj+1/2 − 4
3
Gρ̄n+1

j+1/2

u
n+1/2
sj+1 − u

n+1/2
sj−1

mj+1/2

. (55)

The numerical viscosity in this scheme is given by,

qn+1
j+1/2 = ρ̄n+1

j+1/2L
[
aLD − bcn+1

sj+1/2

]
min(0, D),

D ≡ u
n+1/2
sj+1 − u

n+1/2
sj−1 ,

}
(56)

where a and b are the quadric and linear coefficients of the numerical viscosity, and
L is a characteristic length.

The displacement of the solid phase can be obtained by integrating the velocity, i.e.

Rn+1
sj = Rn

sj + tvu
n+1/2
sj . (57)

3.3. The Lagrangian scheme for solving the balance equations of the liquid phase

The numerical scheme that was used to solve the balance equations of the liquid phase
was similar to the above scheme used for the solid phase. It should be pointed out here
that the difference between the balance equations of the solid phase (equations (30)–
(31)) and the liquid phase (equations (32) and (33)) is the deviator stress which was
neglected in the momentum equation of the liquid phase. Based on equation (33), the
velocity of the liquid phase was calculated by,

u
n+1/2
�j = u

n−1/2
�j −

(
P n

�j+1/2 − P n
�j−1/2 + qn

�j+1/2 − qn
�j−1/2

)tv

m

+
tv

ρn
�j+1/2

F̃ g�θ
n
gj+1/2ρ

n
gj+1/2

∣∣un
g�j

∣∣un
g�j − tv

ρn
�j+1/2

F̃ �sθ
n
�j+1/2ρ

n
�j+1/2

∣∣un
�sj

∣∣un
s�j .

3.4. Solution procedure

A splitting technique was used to solve the multiphase governing equations of the
gaseous, the liquid and the solid phases, which are coupled through the source terms.
First, the balance equations of the gaseous phase were solved with the source terms
as evaluated using the flow properties at the previous time step. Then, using the same
source terms, the balance equations of the liquid and the solid phase were solved.

In order to evaluate the next time step, both the fluid and the solid flow field
properties were re-meshed into their original mesh, which is compatible with the grid
of the gaseous phase. In these compatible meshes the new source terms were evaluated
and the solution procedure repeated until the end of the simulation.
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Case Porosity Relative water content Relative air content

I 0.98 0.10 0.88
II 0.98 0.20 0.78

Table 1. Initial air/water content of the two simulated cases.

4. Results and discussion
4.1. Head-on collision of a planar shock wave with an elastic porous medium

saturated with a liquid – a multiphase solution

In the following, we first describe the case of a planar shock wave propagating in air
and colliding head-on with flexible foam whose pores are uniformly filled with air and
water. The developed flow field was obtained by solving the previously mentioned
one-dimensional governing equations of the multiphase model, i.e. equations (21) to
(29).

The numerical solution is based on an Eulerian scheme for the gaseous phase (air)
outside and inside the flexible foam and Lagrangian schemes for the solid phase (the
foam) and the liquid phases (water) that partially occupies the pores. This approach
enables us to describe the back and forth bouncing waves inside the foam and to
follow with high resolution the front edge of the foam and the front edge of the water
inside it.

When investigating experimentally the above phenomenon, there are two major
technical obstacles:

(i) It is very difficult (perhaps impossible) to have a flexible porous medium whose
pores are uniformly saturated with water and air. Introducing water into a porous
medium, whose pores are filled with air, and generating a situation in which the water
is uniformly distributed inside the pores, and holding this situation stable until an
experiment is conducted is a very difficult task, if even possible.

(ii) It is very difficult, if even possible, to measure, separately, the properties of the
gaseous and the liquid phases inside the porous medium.

As a result of these two technical obstacles, to the best of our knowledge,
experimental results with which the predictions of our numerical simulations could
be compared are unavailable.

Consequently, in the following presentation, qualitative results of our simulation
will be presented. The results will demonstrate the capability of our simulation to
describe the response of an elastic solid phase (flexible foam) saturated with two fluid
phases (water and air) to a head-on impact by a planar shock wave.

Two representative cases that differ in their water content will be described. The
initial conditions regarding the air/water content of these two cases are given in
table 1.

In both cases a planar incident shock wave propagates, with a velocity equivalent to
a Mach number equal to 1.4, in atmospheric air (100 kPa and 300 K) before it collides
head-on with the front edge of the flexible polyurethane foam. The properties of the
120 mm long foam were: material density 1300 kg m−3; porosity 0.98; Poison ratio
0.45; and Young’s modulus 45 MPa. The geometrical coefficients associated with the
medium, namely; the tortuosity factor and the Forchheimer coefficient were assumed
to be 0.78 and 500 m−1, respectively. The foam pores are filled with air and water
that are uniformly distributed in the foam pores. While the microscopic density of
the water is assumed to be constant, their macroscopic density changes as a result of
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the change in their relative content in the pores as the porous medium is deformed
(i.e. the foam is compressed and the water flows through the pores).

Since, as just mentioned, experimental results, with which our simulation results
could be compared, are not available, we did not attempt to determine accurately
the Forchheimer coefficients for the liquid (water) and the gaseous (air) phases.
Alternatively, we adopted the Forchheimer coefficients from Levi-Hevroni et al. (2002)
and assigned it both to the water and the air.

Some results of the resulting flow fields for cases I and II are presented in figures 1
to 9 and figures 10 to 15, respectively. In the following, the results for each of these
two cases will be evaluated separately.

Case I: 10 % water and 88 % air content

Following the head-on collision of the incident shock wave with the front edge of
the foam that is located at x = 0, a shock wave is reflected upstream (see figure 1a)
and three waves, one in the gaseous phase, one in the liquid phase and a compaction
wave in the solid phase are transmitted downstream into the foam towards the endwall
that is located at x = 120 mm. Figures 1, 2 and 3 present the pressure distributions
in the gaseous phase and the liquid phase and the effective stress distribution in the
solid phase, respectively. The solid and the dashed lines emanating from x = 0 are
the trajectories of the front edges of the solid foam and water phase, respectively (see
subsequent discussion regarding these fronts). An inspection of these figures indicates
that the transmitted wave in the gaseous phase, which reaches the endwall at about
0.62 ms, moves at a velocity of about 195 m s−1. It is seen to attenuate very quickly
to become a very weak wave (see further discussion when figure 4 will be presented).
The two other waves, in the liquid and the solid phases, move at almost the same
velocity (about 41 m s−1) and we cannot distinguish between them.

It should be noted here that when running a hypothetical case of a gas (air) having
a density of 1 kgm−3, a liquid having a density of 500 kg m−3 (all the other properties
were identical to those of water) and a solid having a density of 2500 kg m−3 (all the
other properties were identical to those of foam used in the present study) the three
waves were clearly observed. The velocities of the waves in the water and the solid
phases were about 40 m s−1 and 56 m s−1, respectively. Hence, it is possible that owing
to the close densities of the water (1000 kgm−3) and the foam (1300 kgm−3), which
were used in the present study, the velocities of these two waves were too close and
as a result they could not be distinguished from each other.

The fronts of the two waves are seen to reach the endwall at about 3 ms. As a
matter of fact these two waves combine to become the compaction wave. The front
of the compaction wave is clearly seen in the pressure distribution of the gaseous
phase (figure 1), although it is seen to affect the gas pressure only slightly. As will be
shown subsequently, the compaction wave is not a sharp narrow wave, but is a band
of compressive waves that form a sharp front, which is clearly seen in all the figures.
This band of compressive waves is a result of the motion of the foam and the water
downstream (see subsequent discussion of figure 10).

The transmitted wave in the gaseous phase is clearly seen in figure 4 where the
distribution of the gas velocity is shown. The strength of the wave is seen to become
smaller as the wave propagates towards the endwall. The wave is so weak that it
has, in fact, no influence on the pressure distributions of the liquid and the solid
phases (see figures 2 and 3). Upon its collision with the endwall, it reflects upstream
and collides head-on with the compaction wave at about x =50 mm. The reflected
wave, which is also very weak, cannot be seen in the pressure distributions of the
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Figure 1. Pressure distribution of the gaseous phase (air) (a) in the entire flow field, and
(b) inside the foam (porosity = 98 %, air content = 88 %, water content = 10 %).

three phases (figures 1 to 3). However, it is seen to impose a slight attenuation of the
front edge of the solid (foam) and the liquid phases as it collides head-on with them
and reflects back (downstream) as an expansive disturbance (see the change in the
trajectories of these fronts in the ranges 10 � x � 25 mm and 0.8 � t � 1.8 ms.

The compaction wave is, in fact, as mentioned above a band of compressive waves
with a sharp head and a sharp tail. For convenience, the head and the tail of this
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Figure 3. Effective stress distribution of the solid phase (polyurethane) inside the foam
(porosity = 98 %, air content = 88 %, water content = 10%).

compression wave are shown in figure 3 as ch1 and ct1, respectively. This compression
wave reflects head-on from the endwall. The head and tail of the reflected compression
are marked, in figure 3 as ch2 and ct2, respectively. Owing to the impedances when the
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reflected compressive disturbance collides with the front edge of the water, it reflects
back (downstream) as an rarefaction wave. The head of this rarefaction wave is
marked in figure 3 as rh1. Note that a complex interaction takes place between these
reflected compression and rarefaction waves. The trajectories of the front edges of
the foam and the water are clear evidence of the compression/rarefaction interaction
process.

Upon the collision of the transmitted compaction (compression) wave with the
solid endwall, which has higher impedance, it is reflected upstream as a reflected
compaction (compression) wave that moves towards the front edges of the water and
the foam. Figures 1 to 4 indicate that the transmitted compaction (compression) wave
induces a downstream movement of both the foam and the water. The front edge of
the water that partially (10 %) occupies the pores of the foam is seen to move, at the
early stages of the interaction (up to about 2 ms), faster than the front edge of the
foam. During these first 2 ms of motion, the wave in the gaseous phase collides
head-on with these fronts and slows them down (see the reversal of curvature of these
fronts). As a result a water-free zone is evolved. About 2 ms after the interaction
started, the water and the foam front edges are seen to move with similar velocities
for a time period of about 2 ms during which the width of the water-free zone
remains close to constant (about 15 mm). About 4 ms after the interaction started,
the head of the reflected compaction (compression) wave collides head-on with the
front edges of, first, the water (that precedes the foam) and then the foam. Since
the compaction (compression) wave moves in a medium whose impedance is higher
than that behind the front edges of the water and the foam, the collision of the
compaction (compression) wave with these two fronts, results in two rarefaction
waves that converge to a single rarefaction wave that moves downstream towards
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the endwall. These rarefaction waves reverse the direction of propagation of the
two fronts. When the rarefaction wave collides head-on with the endwall, whose
impedance is higher, it reflects upstream as a reflected rarefaction wave. When the
reflected rarefaction wave collides with the front edge of the water and the foam,
behind which the impedances are smaller, it is reflected downstream as a compaction
(compression) wave that reverses the direction of propagation of the front edges of
the water and the foam once again, and causes a second compression process that
is seen to reach the endwall 7.5 ms after the interaction started. The head of this
compaction (compression) wave is marked in figure 3 as ch3. As a result of these back
and forth bouncing compression and expansion waves, the pressure at the endwall is
seen first to increase during the time interval 0–4.5 ms, then to decrease during the
time 4.5–7.5 ms, after which it is seen to increase again (see figures 2 and 3). The
maximum deformation of the flexible foam is about 50 % (60/120). This value is
much smaller than the 80 % that was obtained by Levi-Hevroni et al. (2002) when
a similar case, but without water, was investigated. Not surprisingly, the addition of
water, which is highly incompressible, to the foam reduces the compressibility of the
entire system.

It is important to note that since the water pressure depends on the equation of
state that is used for the water inside the porous medium (see equation (27)), the
description shown in figure 2 is only qualitative. A more accurate description could
be obtained by using a better equation of state.

The macroscopic density distribution of the gaseous phase (ρ̄ = θgρg) in the entire
flow field (−500 mm � x � 120 mm) and inside the foam 0 � x � 120 mm is shown in
figures 5(a) and 5(b), respectively. Beside the back and forth bouncing compression
and expansion waves, the figure reveals the existence of three interfaces (contact
regions) that are marked as 1, 2 and 3 in figure 5(a). These three interfaces divide the
flow field into four flow zones (see subsequent discussion).

The microscopic density distribution of the gaseous phase (ρg) that was obtained
from ρg = ρ̄/θg is shown in figure 6. The dashed lines marked a to e describe the
paths of gas particles which were originally at five different locations.

(i) Particle path a represents a gas particle which was originally 8 mm ahead of
the foam. As can be seen, the gas particle penetrates into the water-free zone of the
foam before emerging from the foam and merging into interface 1.

(ii) Particle path b represents a gas particle which was originally located at the
foam front. As can be seen, the gas particle penetrated into the wet part of the
foam. Following its interaction with the reflected waves, it reversed its direction of
propagation, emerged out first into the water-free zone and then from the foam.
When the foam reversed its direction of propagation the gas particle re-entered the
water-free zone of the foam before emerging once again from the foam. This particle
path is part of the interface 2.

(iii) Particle paths c and d represent two gas particles which were originally located
at 43 and 46 mm, respectively, inside the foam. They are seen to propagate closely
together until they reach the region where the water front reversed its direction of
propagation. At that point, the two paths split. While particle path c emerged out of
the wet zone into the water-free zone where it converged with particle path b, particle
path d reversed its direction of propagation and further penetrated into the wet
zone.

(iv) Particle path e represents a gas particle which was originally located 75 mm
from the front edge. This gas particle remained inside the wet zone throughout the
entire interaction process.
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Figure 5. Macroscopic density distribution of the gaseous phase (air) (a) in the entire flow
field, and (b) inside the foam (porosity = 98 %, air content = 88 %, water content = 10 %).

Particle paths a to d divide the entire flow field into four flow zones that are marked
as A to D.

(i) Zone A represents gas, which was originally outside the foam, then entered it,
but never encountered water.

(ii) Zone B represents gas, which was originally outside the foam, penetrated into
the foam and the wet zone, emerged out and penetrated the foam once again before
finally emerging out of it.
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Figure 6. Microscopic density distribution of the gaseous phase (air) inside the foam
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(iii) Zone C represents gas that was originally inside the foam and first penetrated
deep into the wet zone before emerging out of the wet zone into the water-free zone
and then out of the foam.

(iv) Zone D represents gas that was originally inside the foam and that never left
the wet zone.

Note that particle paths c and d describe in fact the location of interface 3, i.e. the
contact region between zones C and D. This interface splits into two branches (3-left
and 3-right) at about x =70 mm where the two particle paths separate (figure 6).
Particle path c is seen to converge with particle path b and as a result the left-hand
branch of the split interface merges with interface 2, while the right-hand branch of
the split interface reverses its direction of propagation and further penetrates into the
wet zone, as is indicated by particle path d .

Note that only one interface was obtained in the water-free flexible foam case,
which was investigated by Levi-Hevroni et al. (2002). Its origin was similar to that of
the second interface in the present study, i.e. an interface between the gas that was
originally outside the foam and the gas that was originally inside the foam and was
pushed out of it. Unlike the situation shown in figures 5(a) and 5(b), where the front
edge of the foam is seen to overtake the gas that was pushed out of the foam, in
the water-free case (see Levi-Hevroni et al. 2002) the front edge of the foam did not
interact with the interface.

The distribution of the gaseous phase relative content (θg) inside the foam is shown
in figure 7. As mentioned earlier, the gaseous phase relative content is calculated from
θg = 1 − θ� − θs , where θ� and θs are the relative contents of the liquid and the solid
phases, respectively. Unlike figures 1 and 5, the compaction wave and the waves that
result from it owing to its collision with the endwall and the front edge of the foam
are clearly seen.
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Figure 8. Macroscopic density distribution of the liquid phase (water) inside the foam
(porosity = 98 %, air content = 88%, water content = 10 %).

The liquid macroscopic density distribution that is shown in figure 8 complements
the previous description regarding the gaseous phase. In regions where the water is
compressed, the relative content of the gaseous phase decreases, and when the water
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Figure 9. Macroscopic density distribution of the solid phase (polyurethane) inside the foam
(porosity = 98 %, air content = 88 %, water content = 10%).

is decompressed the gaseous phase re-occupies the volume of the pores. The various
waves that travel back and forth inside the foam are again seen very clearly in this
figure.

The foam (solid phase) density distribution, shown in figure 9, is qualitatively similar
to the results that were obtained by Levi-Hevroni et al. (2002) who investigated a
similar case, but without water. The reason for the similarity is the relatively small
amount of water in the presently investigated case. One difference between the
present case and the case investigated by Levi-Hevroni et al. (2002) is the maximum
deformation of foam, which is smaller, in the present case, because the water that
partially fills the pores.

Case II: 20 % water and 78 % air content

The water relative content in this case was doubled to 20 %, as compared to the
case I. Since the foam (solid phase) was identical to that in case I, doubling the water
content resulted in the air content being reduced from 88 % to 78 %.

The trajectories of the front edges of the foam and the water can be seen in figure 10
in the (x, t)-plane of the pressure distribution in the gaseous phase. The trajectories
differ remarkably from those of case I (see e.g. figure 1). Not surprisingly, the larger
water content inside the pores of the foam reduces the capability of the foam to
be compressed. The maximum deformation reached by the foam is about 17 % as
opposed to about 50 % in case I. Recall that an 80 % deformation was obtained by
Levi-Hevroni et al. (2002) when a similar case, but without water, was investigated.
Similarly, while the water front was compressed about 65 % in case I, where the
relative content of the water was smaller and that of the gas larger, it was compressed
about 50 % in the present case. Furthermore, unlike case I, where 2 ms after the
interaction started, the foam and the water front edges reached a similar velocity and
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Figure 10. Pressure distribution of the gaseous phase (air) (a) in the entire flow field, and
(b) inside the foam (porosity = 98 %, air content = 78 %, water content = 20 %).

the width of the water-free zone remained almost constant for a time period of about
2ms (see figure 1), now the water front edge is seen to move faster than the foam
front edge for about 7 ms, during which the width of the water-free zone increases.
After about 7 ms, the two fronts are seen to stop. The width of the water-free zone
at this stage is about 30 mm. Unfortunately, the calculation was carried out only for
an additional time of 1ms, during which the location of the two fronts seems to be
nearly fixed. In addition, unlike the previous case where a decompression stage was
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clearly seen, there is no evidence for the existence of rarefaction waves in the present
case, at least not until about 8 ms after the interaction started. Similarly to case I,
an attenuation of these two fronts, slightly over t = 3 ms, takes place as a result of
the head-on collision of the wave that was reflected from the endwall in the gaseous
phase.

The gaseous pressure distribution in the entire flow field, i.e. outside and inside
the foam (−500 mm � x � 120 mm), is shown in figure 10(a) in the (x, t)-plane. The
foam front edge was located initially at x = 0 and its rear edge is at x = 120 mm. The
incident shock wave is seen to collide head-on with the front edge of the foam. As
a consequence, a shock wave is reflected upstream and a compaction (compression)
wave (recall that it probably consists of two waves, one in the liquid phase and one in
the solid phase) is transmitted into the foam and propagates downstream towards the
endwall. Unlike case I where the velocity of the compaction wave was close to being
constant and equal to about 41 m s−1 now the compaction wave is seen to experience
a very strong attenuation. Its velocity reduces from about 40 m s−1 at the beginning of
the interaction to about 23 m s−1 at the time when it reaches the endwall. This strong
attenuation is probably a direct result of the larger water content. As a result of this
attenuation, the head of the reflected compaction wave is less pronounced in this case
than in case I (compare figures 10b and 1a). When describing case I, it was mentioned
that the compaction wave is not a sharp wave, but a band of compressive waves.
This can be seen in figure 10 where three clear converging compressive waves are
marked. These compressive waves are seen to converge toward the point where the
front edges of the foam and the water are stopped. These fronts are, in fact, stopped
by the rarefaction wave that will be formed as a result of the head-on collision of the
compression wave with these fronts.

As expected, the pressure inside the foam is seen first to increase owing to the
back and forth motion of the incident and reflected compaction (compression) waves,
then the pressure is slightly decreased owing to the back and forth motion of the
incident and reflected rarefaction waves, before it rises again owing to a new cycle
of back and forth moving compaction (compression) waves. An enlargement of the
flow field inside the foam is shown in figure 10(b). This figure reveals that there is
a numerical noise in the vicinity of the front edge of the water. Between the front
edges of the foam and the water, i.e. in the water-free zone, the relative content of
the gaseous phase is 98 %. Immediately downstream of the front edge of the water,
i.e. in the domain inside which there is water, there is a sudden drop in the relative
content of the gaseous phase to values smaller than 78 % (recall that 78 % is the
pre-shocked relative content of the gaseous phase, table 1). This step decrease in the
relative content of the gaseous phase is, most probably, the cause for the numerical
noise. Because in case I the step decrease in the relative content of the gaseous phase
was much smaller (from 98 % to a value smaller than 88 %), the numerical noise was
hardly noticeable there. The numerical noise could have been eliminated by smearing
the jump over a few cells, as in the case of artificial viscosity. However, this will
disperse the water front edge in the gas phase and might influence its movement and
the interaction between the phases. Since we are dealing with a qualitative description
of the flow field we did not explore this possibility.

The macroscopic density distribution of the gaseous phase (ρ̄ = θgρg) in the entire
flow field (−500 mm � x � 120 mm) and inside the foam 0 � x � 120 mm is shown in
figures 11(a) and 11(b), respectively. It is again seen (figure 11b) that the gaseous
phase density field is not continuous. This is a direct result of the back and forth
movement of the water phase inside the foam, which compresses and decompresses the
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Figure 11. Macroscopic density distribution of the gaseous phase (air) (a) in the entire flow
field and (b) inside the foam (porosity = 98 %, air content = 78 %, water content = 20 %).

gas occupying the pores. Unlike the previous case in which the gas that was originally
inside the foam was pushed out of it, and the first interface, which separates the gases
that were originally outside and inside the foam, was located upstream of the front
edge of the foam (see figure 5b), here the interface is seen to be located inside the foam
in the water-free zone (see figure 11b). Recall that in the water-free flexible foam case,
which was investigated by Levi-Hevroni et al. (2002), the interface between the gas
that was originally outside the foam, the gas that was originally inside the foam and
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Figure 12. Macroscopic density distribution of the liquid phase (water) inside the foam
(porosity = 98 %, air content = 78 %, water content = 20%).

was pushed out of the foam, propagated much further upstream. The second interface,
which was mentioned when case I was presented, is also noticeable. However, unlike
case I where it was seen to split as a result of and after the interaction with the
reflected compaction wave, such a split is not seen in the figure. This could be either
because the interaction with the reflected compaction wave starts at about t = 7 ms
while the computation ends about 1 ms later and as result the split which occurs later
is not seen, or because of the lower intensity of the interaction that results from the
weaker reflected compaction (compression) wave.

The liquid macroscopic density distribution is shown in figure 12. The relative
content of the liquid phase (water) is seen to reach values of about 50 %, which
implies that the relative content of the gaseous phase (air) is about 48 %. Hence,
across the front edge of the water, the relative content of the gaseous phase drops
sharply from 98 % (at the water-free zone) to 48 %. This sharp drop introduces the
numerical noise into the calculations.

The foam (solid phase) macroscopic density distribution is shown in figure 13.
Since, owing to the relatively high content of the liquid phase the deformation of the
foam is relatively small, there are relatively small changes in the macroscopic density
of the foam. However, it seems to be higher at the water-free zone. This is due to
the higher compressibility of the pores with the air than the pores with the water–air
mixture.

The water pressure and the effective stress distributions are shown in figures 14
and 15. The description here is only qualitative since we do not have the proper
equation of state for the water inside the porous medium. In general, we can see the
compression wave propagating upstream towards the endwall, and then pressure and
stress releases by waves reflected at the front edge of the liquid phase.
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air content = 78 %, water content = 20%).

5. Summary and conclusions
The three-dimensional governing equations of the flow field which is developed when

an elasto-plastic flexible open-cell porous medium, capable of undergoing extremely
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Figure 15. Effective stress distribution of the solid phase (polyurethane) inside the foam
(porosity = 98 %, air content = 78 %, water content = 20%).

large deformations, whose pores are uniformly filled with liquid and gas, is struck
head-on by a planar shock wave, were developed using a multiphase approach.

The one-dimensional version of these equations was solved numerically using an
ALE based numerical code. Air and water were used as the gaseous and the liquid
phases, respectively.

Two cases, which differ only by the initial relative contents of the liquid and the
gaseous phases, were solved. In the first case, the water initial relative content was
10 % (and that of the gas 88 %) while in the second one it was 20 % (and that of the
gas 78 %).

Based on the results presented by Levi-Hevroni et al. (2002) who studied the
situation of a water-free porous medium and the two cases investigated in the course
of the present study, water relative contents of 10 % and 20 %, it is clear that the foam
becomes less compressible as the water content inside it increases. In the water-free
case, the maximum deformation of the polyurethane foam was about 80 %, but it
reduced to about 50 % when the relative water content was increased to 10 % and
to about 17 % when the relative water content was increased to 20 %. This can be
seen in figure 16 where the three trajectories are shown. Points A in this figure mark
the location at which the reflected wave, in the gaseous phase, collided head-on with
the foam front edge, and points B mark the location where the head of the reflected
compaction wave collided head-on with the foam front edge. While the first collision
slowed down the interface, the second one reversed its direction of propagation (note
that in the water-free case, point A cannot be detected since the foam front edge is
moving very fast and the slight slow-down is unnoticeable.

The numerical results revealed that the gaseous phase flow field depends directly on
the liquid phase flow field. When the liquid phase is compressed, the gaseous phase
expands into the pores that are evacuated by the liquid.



186 D. Levi-Hevroni, A. Levy, G. Ben-Dor and S. Sorek

8

7

6

5

4

T
im

e 
(m

s)

3

2

1

0
0 20 40 60

Length (mm)
80 100 120

B

B

B

A

A

20 % 10 %

Endwall

θ� = 0 %

Figure 16. Trajectories of the front edges of the foam for the two cases that were investigated
in this study (water contents of 10% and 20 %) and the water-free case that was investigated
by Levi-Hevroni et al. (2002).

The macroscopic compressibility of the gaseous phase was composed of the
microscopic compressibility of the gas and from the change in the relative content of
the gaseous phase inside the pores.

In general, the solution of the governing equations resulted in macroscopic
properties, which are the average of the microscopic properties inside the represen-
tative elementary volume. The microscopic densities of the gaseous phase could be
derived, indirectly, by dividing the calculated macroscopic density by the gaseous
phase relative content. With the aid of this quantity, it was possible to isolate the
influence of the changes in the relative content of the gaseous phase, which resulted
from the motion of the liquid phase, from the changes in the microscopic density
of the gas. Reducing the relative content of the gaseous phase in the medium as a
result of the motion of the liquid resulted in a decrease in the macroscopic density of
the gaseous phase. However, the microscopic density of the gaseous phase increased
because the same mass of gas occupied a smaller volume of the pores.

The numerical results clearly illustrate the capability of the developed numerical
code to describe in detail the very complex flow field that is imposed when a planar
shock wave collides head-on with a porous medium whose pores are filled with
gaseous and liquid phases.

In order to obtain a more accurate description of the flow field, we must revise
the equation of state of the water phase (perhaps use the Tait’s equation of state)
and design an experiment by which some of the parameters that were used in the
simulation, such as the Forchheimer constants of the liquid and the gaseous phases,
could be measured.

The numerical-simulation results also imply that investigating situations in which
the relative content of the liquid phase is larger than 20 % could be redundant, since
beyond this value the polyurethane foam loses its flexibility and, as a result, the
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foam will hardly deform and, in fact, it will probably behave like a liquid-saturate
closed-cell porous material.

Finally, it should be noted once again that the present study complements our earlier
study in which we solved, using an ALE based numerical code, the one-dimensional
governing equations of the flow field, which is developed when an elasto-plastic open-
cell flexible porous medium, capable of undergoing extremely large deformations,
whose pores are saturated with gas only, is struck head-on by a planar shock
wave.
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